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An algorithm is presented for computing the forces on atoms in a free cluster using a 
massively parallel computer with processing elements connected in a square grid. ‘The method 
is applied in molecular dynamics simulations of the melting transition in NaF and the plastic 
phase transformations, as well as melting, in sulphur hexafluoride. c 1988 Academic Press ,T .nc. 

INTRODUCTION 

The dynamics of particles interacting with pairwise forces is a problem ideally 
suited for simulation using highly parallel computers of simple architecture. The 
ICL distributed array processor (BAP) [ 1], consisting of 40% single-bit processing 
elements (PI%) connected in a square cyclic grid, is one such machine. The periodic 
arrangement of the PEs can be exploited with great efficiency on systems governed 
by periodic boundary conditions if the particles of the system do not diffuse or 
change places too quickly. For such problems the PEs are assigned to specific par- 
ticles of the system, giving a mapping which allows the easy transfer of data 
between interacting molecules. Although neighboring molecules may not be on 
neighboring PEs [Z] there is very little loss in computer time as the DAP is very 
efficient in its communications. This approach has been successful in studying the 
plastic phase transformations in SF, [3-61 and n-butane [7] and melting in 
naphthalene ES]. 

In the present paper we introduce another approach applicable to any finite 
system governed by pairwise interactions. Specifically, we consider a finite cluster in 

* Work performed as visiting scientist at the University of Edinburgh. 

405 
0021~9991/88 03.UO 

Copyright 0 1988 by Academic Press, Inc. 
All rights 0: reproduction in any form reserved. 



406 BOYER AND PAWLEY 

free space. For this problem our strategy is simply to compute the interactions 
between all possible pairs in the system, 4096, or as near as possible to 4096, at a 
time. Implementing this “brute force” approach then amounts to finding an efficient 
method for accounting for all the interactions. In the following section we present a 
method which accomplishes this for the DAP architecture with remarkable 
efficiency. 

The method has a few advantages over other methods. As we have dispensed 
with neighbor lists for choosing interactions we do not have to include a section of 
software which updates such lists. Neighbor list searches are most efficiently 
implemented in different ways for solids and gases, presenting problems in the 
regime of low-density liquids: All these systems can be treated now with exactly the 
same software. Another problem which usually has to be faced is how to implement 
zero-pressure simulations, but this again is a problem which does not concern us 
because our system is a cluster in free space. Finally, we note that the Coulomb 
interaction is easy to handle for the finite cluster, whereas special techniques, such 
as the Ewald method, must be employed for the infinite system. 

The study of surface-related properties is currently an important area for research 
in condensed matter physics. Molecular dynamics (MD) of finite systems, or 
clusters, offers the possibility of studying both surface and bulk properties by the 
same method. We illustrate this point with selected results from ongoing studies of 
melting and plastic phase transformations. 

COMPUTATIONAL STRATEGY 

The most time consuming part of an MD calculation is the computation of the 
forces acting on the atoms or ions in the system. (Henceforth we use the term atoms 
to mean atoms or ions.) The feature of the force calculation exploited by a 
massively parallel computer is the fact that many pair interactions in the system are 
derived from a single potential function. A monatomic system, for example, has 
only one potential function, while a diatomic system has 3 different potentials, etc. 
The DAP is a single-instruction-multiple-data (SIMD) computer; which is to say 
that at a given time all PEs are acting on one and the same instruction. In a single 
instruction one can compute the forces due to as many pairs of a given type as there 
are PEs in the computer. The broadcast instruction acts on the relative coordinates 
of the pairs (multiple data) to determine the forces for each of the pairs. Parallel 
computers which allow PEs to act “independently,” known as multiple-instruction- 
multiple-data (MIMD) machines are obviously more flexible, in general, than an 
SIMD machine. However, for the problem considered here an MIMD machine 
would have no real advantage over the SIMD machine. If one had a limited budget 
to design a computer solely to do molecular dynamics calculations, it could well be 
a massively parallel SIMD machine. 

In order to simplify the discussion of the force calculation, we assume our com- 
puter is a 4 x 4 array of 16 PEs, and our cluster consists of 8 singly charged ions 
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interacting via the Coulomb potential. In this case, SJMD operations are carried 
out on the elements of the natural sized square matrices. By natural matrices we 
mean, in this case, 4 x 4 arrays. Natural matrices in the DAP are, or course, 64 x 44 
arrays. Similarly, we refer to a sequence of 4 numbers of an arbitrary array as a 
natural vector. For example, a row or a column of a natural. matrix is a natural 
vector. 

The algorithm presented here requires four operations involving the natural 
matrices, in addition to the basic arithmetic operations needed to evaluate the 
potential and force functions: (1) an efficient method for copying a sequence of 4 
numbers of an arbitrary array into either all the rows or all the colums of a natural 
matrix; (2) a method for summing the rows, or colums, of all the elements of a 
natural matrix; (3) the capability of logical masking, which specifies, using a 1 
matrix, whether or not operations on individual elements of natural mat& 
actually carried out; and (4) the transpose operation. 

Let X, Y, and Z, be arrays dimensioned X(,2), Y(,2), and Z(J), and Pet the 
elements of X, Y, and 2 be the x, y, and z coordinates of the positions of the 8 
atoms. In other words, the x components of atoms l-4 form the first natural vector 
of X, specifically, X(, 1 ), and the x components of atoms 5-8 form t 
natural vector of X, namely, X(,2). We refer to pairs of atoms whose positions are 
stored in two vectors as two-vector interactions, and pairs arising from the 
positions in one vector as one-vector interactions. 

First consider the two vector interactions. Let XR be the natural matrix w 
rows are X(,1), the x coordinates of the positions of atoms 14: 

XR= 
Xl x2 x3 x4 

Xl x2 x3 x4 

Xl x2 x3 x4. 

And, let XC be the natural matrix whose columns are X(,2), the x components of 
the positions of atoms 5-8: 

x5 x5 x5 x5 

xc= 
x6 x6 x6 x4 

Xl x7 Xl x7 

The commands which create XR and XC in DAPFORTRAN are 
MATR(X(,l)) and XC= MATC(X(,2)). 

The relative coordinates for all possible pairs between the first and second vector 
atoms are given by XR - XC, YR - YC, and ZR - ZC where YR, YC, ZR, and ZC 
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are the analogous matrices for the y and z components. The relative separations for 
each of these pairs are the elements of the matrix 

R=SQRT((XR-XC)**2+(YR-YC)**2+(ZR-ZC)**2) 

and the x components of the forces associated with these pairs are the elements of 

XX=(XR-XC)/R**3. 

Let FX be an array, dimensioned FX(,2), for storing the x components of the forces 
on the ions. It is updated to include the above contributions by two statements in 
DAPFORTRAN: 

FX(,l) =FX(,l) + SUMR(XX) 

and 

FX(,2)=FX(,2)- SUMC(XX), 

where SUMR (SUMC) creates a natural length row (column) vector from the sum 
of the rows (columns) of a natural matrix. 

The remaining pairs are one-vector interactions. They are accounted for in a 
similar fashion by constructing the matrices 

x1 x6 x7 xS 
XR= 

xl x2 x7 x8 

and 

xc= 
x2 x2 x6 x6 

x3 x3 x3 x7 

x4 x4 x4 x4 

using the DAPFORTRAN statements 

XR = MERGE(MATR(X(,l)), MATR(X(,2)), LT) 

and 

XC= MERGE(MATC(X(,l)), MATC(X(,2)), LTD), 
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where LT and LTD are, respectively, logical matrices with the lower triangle an 
the lower triangle plus the diagonal equal to true: 

FFFF 

TFFF 
LT= 

TTFF 

TTTF 

and 

T F F F 

TTFF 
LTD = 

TTTF 

T T T T. 

The MERGE statement constructs a matrix from the elements of two matrices (first 
two arguments) using the elements of the first (second) matrix if the corresponding 
elements of the logical matrix (third argument) are true (false). 

Notice that the lower triangle of 

XX= (XR- XC)/R**3 

contains the x components of forces due to interactions between pairs of first-vector 
atoms, while the upper triangle of XX contains the x components of forces due to 
pairs of second-vector atoms. The diagonal of XX contains interactions which have 
already been counted, so they have to be discarded. The followmg statements 
update the force array from the elements of XX: 

XX = MERGE(XX, 0.0, LD) 

XXT= -TRAN(XX) 

FX(,l) = FX(,l) $ SUMR(MERGE(XX, XXT, LT)) 

FX(,2) = FX(,2) + SUMR(MERGE(XX, XXT, .NOT.LT)), 

where TRAN is the transpose operation and LD is a logical matrix with fatse on 
the diagonal. 

F T T T 

TFTT 
LD= 

TTFT 

TTTF 

581/7X/2-11 
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The characteristic feature of the method just described is the expression of 
relative coordinates as differences between two matrices, one with identical rows 
and the other with identical columns. We shall refer to this as the row-column 
difference (RCD) method. It is easily generalized to include arbitrary numbers of 
atoms by (a) incorporating the above operations in suitable loops and (b) introduc- 
ing “dummy” atoms if the number of atoms of one type is not a multiple of the 
rank (N) of the natural matrix. Let NN be the number of natural vectors required 
to store one of the position components of one type of atom in the system. For 
example, the DAP calculations discussed in the next section pertain to a cluster of 
216 ions, 108 Na+ and 108 F- ions. Here N = 64 and NN = 2: The second group of 
Na+ ions contain 20 dummies, and likewise for the F- ions. Forces due to dummy 
ions are excluded from the force array updates using logical masking techniques 
similar to those employed above in calculating the one-vector interactions. A single 
loop from 1 to NN*2, in incremeents of 2, accounts for all one-vector interactions. 
Another double loop over Z and J, Z= 2 to NN*2 and J= 1 to I- 1, accounts for 
two-vector interactions. 

Before proceeding to a discussion of results, we consider briefly another class of 
algorithms for parallel computation of forces in a cluster. A baxically different 
strategy from the RCD method is to store position components in IWO different 
natural arrays and then account for all pairs by suitably shifting the elements of one 
array relative to the other. We call this the store two and shift (STS) strategy. 
Within the STS approach two different situations can arise: The number of PEs can 
be either greater than or less than the number of atoms. We briefly consider two 
examples which illustrate both situations as well as two different architectures. 

In the first example we consider a system of 64 atoms using a 16 x 16 array of 
PEs. In one natural matrix (Xl) four copies of the x components of position vectors 
are stored in columnwise order as follows: atoms l-16 in the lst, 5th, 9th, and 13th 
columns; atoms 17-32 in the 2nd, 6th, 10th and 14th columns; atoms 33-48 in the 
3rd, 7th, llth, and 15th columns; and atoms 49-64 in the 4th, 8th, 12th, and 16th 
columns. A second natural matrix (X2) is filled with x components of positions for 
atoms 1-16 in the lst, &h, llth, and 14th columns; atoms 17-32 in the 2nd, 5th, 
12th, and 15th columns; atoms 3348 in the 3rd, 6th, 9th, and 16th columns; and 
atoms 49-64 in the 4th, 7th, lOth, and 13th columns. All pairs are accounted for by 
repeatedly (8 times) subtracting the two matrices (Xl and X2) and cyclically 
shifting the elements of X2 south by one row. The first such subtraction contains 
self “pairs” in the first four columns, and thus must be excluded. Repeatedly 
subtracting and shifting 16 times, double counts each pair. This method was 
programmed for the DAP and found to be slightly faster than the RCD method 
when pairs are double counted in both methods. We did not consider the modest 
improvement in efficiency offered by this method sufficient, for this initial study, to 
offset the convenience of the simpler and more flexible RCD method. 

Now consider a system of 16 atoms and assume we have a parallel computer con- 
sisting of 8 PEs connected in a ring. Our natural array for this machine is a vector 
with 8 components. First consider atoms l-8 interacting with atoms 9-16. As 
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before, we illustrate the accounting of all pairs by looking at the difference between 
x components of atom positions. Let Xl be a natural vector containing the x com- 
ponents for atoms 1-8, X1( 1) the x component for atom 1, XI(Z) the x compo~cut 
for atom 2, etc., and similarly let X2 be a natural vector containing the x com- 
ponents for atoms 9-16. The relative components of all pairs between the two 
groups of atoms are obtained by repeatedly (8 times) subtracting X2 from X1 and 
shifting the elements of X2 clockwise. Interactions involving atoms in one group 
with themselves are obtained by making X2 a copy of Xl, shifting the elements of 
X2 one unit clockwise, and then repeatedly (4 times) subtracting X2 from X1 and 
shifting X2 clockwise. The last such subtraction must be given special considera- 
tion, otherwise 4 pairs will be double counted. This would not occur if our ring 
consisted of an odd number of PEs. 

THERMAL EXPANSION AND MELTING OF ALKALI HALIDES 

Molecular dynamics calculations for NaF clusters containing 216 ions and 512 
ions have been carried out on the DAP for the purpose of studying properties 
related to the melting transition. Pair potentials derived by the method of Go 
and Kim [93, which require no experimental input other than universal const 
were used to compute the forces. To a good approximation, the numerical values 
for the Gordon-Kim potential energy of two interacting ions can be expres 
the sum of a long range part plus four exponential terms, where the short 
exponential terms account for the short range part of the electrostatic interaction 
and the kinetic, exchange, and correlation energy of the electrons [IO]. Of all the 
alkali halides we chose to study NaF because the Gordon-Kim potentials were 
found to give best agreement with experiment for the thermal expansion c~e~~ie~t 
and elastic constants, at room temperature, for this material [lo]. 

A 216-ion cluster was prepared by starting with a block of 6 (100) planes, 6 x 6, 
or 36 ions per plane, in their perfect lattice positions. The lattice constant used was 
8.6 Bohr, which is close to the value for minimum energy 
addition, the ions were given small random displacements a 
were constrained to give a net zero linear and angular mo ntum for 
and to have the center of mass at the origin. The starting cofiguration for the 
512-ion cluster was similarly prepared from 8 (100) planes, each containing an W x 8 
array of 64 ions. 

The time step used in these calculations was 0.0025 ps, which is roughly 4 
period of the highest frequency mode of the bulk crystal. The amount of c 
time required for the 512 ions cluster was slightly less than 0.5 s per time 
comparison, the same calculation carried out on a Cray X 
take -0.3 s per time step. 

The 216-ion cluster was initially given a small amount of kinetic energy, 
equivalent to a temperature T= 200 K. The simulation was then allowed to procee 
at constant energy for 25 ps. Apparent thermal equilibrium was achieved after 
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several picoseconds. This was checked by least squares fitting a straight line to the 
kinetic energy as a function of time t in the range 13 < t < 25 ps, and observing that 
the resultant line had essentially zero slope. (In future discussion we use T(t) to 
denote the instantaneous kinetic energy, in equivalent temperature units, and 
reserve T to denote the equilibrium temperature with zero slope.) The total energy 
of the system was then increased by scaling up the velocities to give an increase 
equivalent to 200 K. The simulation was again allowed to proceed at constant 
energy until a new thermal equilibrium was attained. The resultant temperature 
increase was found to be almost 100 K. (Note that if the system were perfectly 
harmonic the equipartition theorem would require exactly 100 K increase.) This 
procedure was then repeated a total of 16 times. For the first 13 energies the 
equilibrium temperature increased as a function of total energy E, but the departure 
from equipartition increased dramatically. After increasing the total energy 2600 K 
from the value of the initial simulation the ions began to diffuse, the volume of the 
cluster increased and T decreased. In other words, the cluster melted. The 
simultaneous drop in temperature and increase in volume corresponds to a 
reapportionment of the total energy; specifically, a transfer of kinetic energy to 
potential energy. Further increase in total energy resulted in an increase in the 
temperature of the liquid. The equilibrium temperature of the cluster is plotted as a 
function of half the total energy (E/2) in Fig. 1. Our simulation for the 512-ion 
cluster also showed this general behavior, although slightly more energy (N 100 K) 
was required to melt the 512-ion cluster. 

It is desirable to have a method for calculating the density of selected regions of 
both liquid and solid clusters. For convenience we select cube-shaped regions cen- 
tered at the origin, which, in our case correspond to the center of mass. Let I, be 
the cube “radius”; i.e., 2r, is the cube width. Next we center Gaussians of width l/a 

FIG. 1. Plot of equilibrium temperature T vs half the total energy. The energy scale is shifted to be 
zero at T= 0 and converted to equivalent temperature units. Half the experimental latent heat (L/2), for 
comparison with E/2, is indicated on the abscissa. T, denotes the experimental melting temperature. 
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at the instantaneous positions of the ions in the cluster. The fraction of a ~a~s§ia~ 
centered at r = (x, y, z) in the selected cube is f = f, f&, where fx = 2 -g, - h 
x2<rz, f,=lg,-h,( for x2>r;i, gx=erfc([x+r,[3(), h,=erfc(ix--r,[a) ( 
similar expressions for y and z) and erfc is the complimentary error function. 
mass density is then given by C mjfj/8r,, where mj is the mass of the jth ion, 
given above for the ion at rj= (xi, y,, zj) and C is a summation over all 
the cluster. This part of the analysis was easily programmed for the 
convenience we plot, instead the density, the corresponding lattice cons 
the rock salt structure, regardless of whether the cluster is in the liqu 
phase. In particular, the plots of thermal expansion in Fig. 2 show results Iabele 
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FIG. 2. Plot of the effective lattice constant, averaged over 16 ps, as a function of T for seJected 
regions in 216-ion and 512-ian clusters, with A5, A9, and Al3 corresponding respectively to cube shaped 
regions centered at the center of mass with widths of 10, 18, and 27 Bohr: (a) comparison of A5 and A9 
for the 216-ion cluster; (b) comparison of A5, A9, and Al3 for the 512-ion cluster; (c) comparison of A5 
for the 216~ion and 512-ion clusters with experimental results (Ref. 1113). 
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AS, A9, and A13, which correspond respectively to Y, = 9, and 13.5 Bohr. These 
values were selected to enclose 8, 64, and 216 point ions, respectively, in the cube 
when its interior is a perfect microcrystal of NaF. An optimum value of a -0.3 
(Bohr) -’ was determined by examining the results for A5, A9, and Al3 derived 
when the ri were selected to be at perfect lattice sites with a ranging from 8.4 to 
lOBohr. With a = 0.3 the density was given correctly to -0.1% by the above 
expressions. The error was then least-squares fitted to a quadratic function in a. 
Applying the resultant correction, a was then given correctly to within 0.005% 
everywhere in the range 8.4 <a < 10 using this procedure. 

The results in Fig. 2 were obtained by averaging 320 instantaneous values of A in 
a 16 ps run after thermal equilibrium was achieved. There are several noteworthy 
features in Fig. 2. First of all, the procedure described above appears to be a 
reliable method for calculating the density of selected regions in the interior of a 
cluster: Little noise is seen in the temperature dependence and it does produce 
accurate values for perfect crystals. There is substantial difference between A5 and 
A9 for the 216-ion cluster, as one might expect, but little difference between the two 
for the 512-ion cluster; indicating that A5 or A9 of the 512-ion cluster is probably 
close to that of a bulk crystal. To be certain of this, further results are needed for 
larger clusters. Results for A5 for both the 512- and 216-ion clusters are in 
reasonable agreement with experiment. In fact, the good agreement in the 
magnitude of a is somewhat fortuitous. The accuracy of predicted lattice constants 
using Gordon-Kim potentials is generally not better than a few percent: And zero- 
point motion, not included in our classical simulation, would shift the theoretical 
curves up by -0.5%. Both theory and experiment show a considerable increase in 
thermal expansion in the last -200 K before melting. While this is considerably 
more pronounced in the calculations, it is evident in the experimental results by 
plotting the thermal expansion coefficient: see Fig. 1 of Pathak et al. [ll]. They 
attribute the increase in thermal expansion just prior to melting to thermally 
generated Scottkey defects. In the simulation, the clusters remained perfect 
microcrystals up to the point where they began to melt. Clearly, much longer 
simulation would be required to generate point defects. The precursor is somewhat 
less pronounded in the 512-ion cluster than the 216-ion cluster. 

It is interesting to look at the onset of diffusion in the cluster as it melts. This is 
done in Fig. 3, where the root-mean-square displacements (R2A) of ions in the 
cluster corresponding to the 14th point in Fig. 1 are plotted as a function of time. 
In the first 33 ps the displacements are computed from the instantaneous positions 
at 5, 9, 13, 17, 21, 25, and 29 ps. From t = 33 to 105 ps the displacements are com- 
puted from snapshots taken every 8 ps. The results for R2A are decomposed 
according to ion type (Na or F) and according to whether they were inside or 
outside the cube with r, = 9 Bohr at the time of the snapshot. The walls of this cube 
lie approximately midway between the 64 “bulk” ions and the outer 152 “surface” 
ions the 21Bion microcrystal, which was still more or less intact for times less than 
- 30 ps. Straight-line fits to R2A are also plotted in Fig. 3. For t > -80 ps, the 
cluster achieved an equilibrium temperature. In this region the slope of the linear 
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FIG. 3. (a) Plot of the root mean square displacements (R2A) of Na ions from snapshots (of the 
cluster corresponding to the 14th point in Fig. 1) taken every 4 ps from t = 5 to 27 ps. Upper (lower) 
curves are for ions that were outside (inside) a cube of width 18 Bohr at the time of the most recent 
snapshot. Straight lines correspond to linear tits to the results over all but the frrst 0.5 ps of the 4 ps 
intervals, except for vertical lines, which are to be ignored. (b) Same as (a) except for F ions. (c) Same 
as (a) except snapshots taken every 8 ps from t = 33 to 97 ps. (d) Same as (c) except for F ions. 

fits to R2A could be used to obtain a diffusion coefficient. The vertical straight lines 
are to be ignored. The results in Fig. 3 show there is no essential difference between 
the diffusion of the two different types of ions. Diffusion begins first for the surface 
ions, but ultimately diffusion spreads throughout the cluster. The phenomenon of 
surface melting [12], in which a portion of the surface melts and comes to 
equilibrium with the solid interior, was not observed. During melting the average 
kinetic energy gradually decreased, from T- 1250K at t-8ps to T-95OK af 
t N 80 ps. Beyond t = 80 ps, to t = 105 ps, no further decrease in T was observed. 
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FIG. 4. Plot of the temperature T(t) and the effective lattice constants A5 and A9 (see text for a 
complete description) during the melting for the cluster corresponding to the 14th point in Fig. 1. 

Notice that beyond t N 80 ps diffusion persists throughout the sample at essentially 
a constant rate, which is the same for both Na+ and I;- ions. Also during melting 
(t < -80 ps) the density of the interior of the cluster decreased by about 15%, 
indicating a net increase in potential energy to compensate for the loss of kinetic 
energy. This is illustrated in Fig. 4 where A5, A9, and T(t) are plotted as a function 
of time. 

The cluster corresponding to the 13th point in Fig. 1 could possibly melt given 
a sufficiently long simulation. However, it remained a diffusionless ordered 
microcrystal after running for over 100 ps. The cluster corresponding to the 12th 
point can definitely be said to prefer the solid crystalline form. Energy was taken 
gradually (12.5 K/ps) out of the 14th-point cluster to reduce it to that of the 12th- 
point cluster. Further simulation at constant energy for 40~s produced an increase 
in T and a corresponding increase in density to values near those for the 12th-point 
unmelted cluster. During this time the diffusion gradually ceased, except for a small 
amount of diffusion on the surface, and the bulk of the sample had evidently (based 
on computations of diffraction) recrystallized. 

Crystallization from a supercooled liquid has previously been simulated using 
molecular dynamics with constant-volume periodic boundary conditions [13, 141. 
The constant volume/shape constraint evidently does not impede crystallization 
because the resultant material (crystalline solid) prefers a smaller volume. On the 
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FIG. 5. Shape of the cluster for the 16th point in Fig. 1 (liquid at T- 1120 K) for three times 
(a) t = 13, (b) t = 21 and (c) I = 29 ps. The three-dimensional surfaces plotted are surfaces of constant 
density obtained by replacing point ion masses with suitable gaussians. The plotting routine was adapted 
from the tetrahedron method for plotting Fermi surfaces (Ref. [IS]). 

other hand, in melting, the resulting material (liquid) prefers a larger volume. 
Moreover, the shape of the material must be allowed to change for the system to be 
completely unconstrained. 

We have examined changes in the shape of the cluster by monitoring the rnorn~~~ 
of inertia tensor and by generating 3 dimensional plots of the cluster at sefecte 
times. The shape of the cluster appears to be constantly changing in the h 
phase. This is illustrated in Fig. 5, where “snapshots” of the I&h-point cluster are 
shown at three times, 8 ps apart. The dramatic changes in shape are indicative of 
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the fact that liquids have essentially no resistance to shear stress. The plots in Fig. 5 
were drawn by first smearing out the point ion masses with Gaussians of suitable 
width and then plotting a selected surface of constant density. The surface plotting 
program was adapted from a routine originally developed for plotting Fermi sur- 
faces [ 151. 

From Fig. 1 we see T, - 1200 K for the 216-ion cluster, which is reasonably close 
to the experimental value for a truly macroscopic sample, 1260 K. The calculated 
value of T, is probably too high: It is known, for example, that the melting point of 
small metal clusters (diameter of 20-30 A) can be depressed by 20 to 30% from the 
bulk value [16]. And, our calculated value for the 512-ion cluster is T, - 1250 K. 
Calculations are underway from the 10 x 10 x 10 lOOO-ion cluster. If isothermal 
conditions were maintained at the point where melting begins (13th point in Fig. 1) 
then energy would be taken in by the cluster until it transformed to a liquid at T,. 
The amount of this energy is in good agreement with the experimental value for the 
latent heat (see Fig. 1). 

These results indicate that above a certain critical energy, microcrystals of a few 
hundred ions, in a perfect vacuum, would transform to a homogeneous liquid at a 
lower temperature. This liquid state could only be achieved, under isothermal 
conditions, by supercooling the liquid below the melting temperature. 

While this article was in preparation we became aware of similar MD calcula- 
tions for alkali halide clusters carried out by Juo et al. [17]. They also observe a 
sharp kink, or “Van der Waals loop,” in the E vs T curve, and find a narrow 
region, which would correspond to energies between the 13th- and 14th-point 
clusters in our calculations, where solid and liquid coexist. They identify this region, 
which falls midway between the maximum and minimum, with the melting tem- 
perature. As mentioned above, we cannot be sure that the 13th-point cluster would 
not melt, or possibly, partially melt, given a sufficiently long simulation. However, 
the 12th-point cluster would presumably not melt because, according to our 
calculations, the liquid solidifies at that energy. For this reason we do not identify 
the midpoint of the kink as the melting temperature. Our simulations for the 512- 
ion cluster exhibit a possible region of solid-liquid coexistence, but, like the 216-ion 
cluster, this region is very narrow compared to the latent heat. This is the intriguing 
aspect of our results on melting. For truly macroscopic systems solid and liquid 
phases coexist indefinitely over a large energy range which, in fact, defines the latent 
heat. Our results show we are a long way from achieving this state, for systems with 
several hundred atoms. Firm resolution of these issues will require longer 
simulations with larger clusters. 

SULPHLJR HEXAFLUORIDE 

Molecules of sulphyr hexafluoride, SF,, consist of a central S atom surrounded 
by the six F atoms at the vertices of a perfect octahedron. When liquid SF, is 
cooled, it forms what is known as a plastic crystalline phase, intermediate between 
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the liquid and the truly crystalline phases. The molecules become ordered on a 
body-centered cubic lattice, but have considerable dynamic orientational disor 
On further cooling another phase occurs where two-thirds of the molecules before 
orientationally ordered while the other third remain disordered. This has been 
observed by low-energy electron diffraction [lS], but not by neutron diffraction 
[19]. Further cooling produces the lowest temperature phase which is truly 
crystalline. 

All these transitions except that from the liquid to the plastic phase have 
simulated in molecular dynamics [3,4], the transition from the plastic to the lower 
phases being the first such transition to be modelled on a computer [S]. The com- 
puter model for these transitions was based on lattice statics and lattice ~y~a~~~s 
calculations [5], and involved a very simple intermolecular force model. A 
Lennard-Jones atom-atom potential was assumed to govern the i~tera~t~~~ 
between any pair of F atoms, and by summing the forces that this potential gave, 
intermolecular forces and torques can easily be found. The potential function 
contains two parameters and these were fixed by using the cubic lattice parameter 
and the sublimation energy, thus giving no adjustable arameters for the 
model. Nevertheless the phase transitions were duly reproduced, with tra~$~~~o~ 
temperatures very close to those for the natural SF,. 

The model has been the basis of extensive worlk on the dynamics of the transition 
161. We wish to report here the evidence for these transitions observable 
droplet, or cluster, of SF,. The size of the droplet here used is very small in. 
containing only 128 molecules, as compared with the 4096 molecules i 
“infinite” sample of the earlier publications. 

A spherical sample was made by taking a plastic phase configuration from the 
earlier work and carving out a spherical cluster containing the required number of 
molecules. Each F atom of each molecule of the cluster is assumed to interact wit 
ail the other F atoms in the sample, following the procedure outlined earlier. Eat 
time step therefore involves the calculation of (6 x 128J2/2 or about 300,000 interac- 
tions, and takes about one second in the DAP. This is to be compared with one 
million near-neighbor interactions per time step used for the calcu%at s of 
[3,4,6], which took about three seconds per time step in the DAP in the matrix 
made. That these are very comparable is a consequence of the fact that most of the 
calculation for the cluster takes place in matrix rather than vector mode. 

The configuration chosen to start the cluster was at a temperature where the bulk 
system was in the plastic phase. Within a few minutes of computer time running 
simulation at 25 K it was apparent that a single crystal of the lowest t~mpe~at 
phase had formed. This can be seen from the first part of Fig. 6 which is ~~~str~~te~ 
as follows. Each molecule gives rise to three dots in the m, found by 
projecting the six S-F vectors onto a unit sphere. The inters 
hemisphere are discarded, and those in the upper hemisphere are proje 
equatorial plane using the equal-area projection, The dot density has been i~~~~ased 
by taking a number of configurations separated by small time intervals, 

At the time of cluster construction the mean S-F bond directions lay along the 
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FIG. 6. Dot-plots showing the orientation of all the S-F bonds throughout the whole 128 molecule 
cluster of SF,. The upper hemisphere is shown, and the equal-area projection is used. The sample 
temperatures were 25, 50, 75 and 85 K, and the ordered structure is still apparent at 85 K. 

Cartesian axes, the equatorial axes being represented on the diagrams. The mean 
bond directions have shifted quite considerably on forming the crystal, the cluster 
at all times having zero angular momentum. It is apparent from the figure for 25 K 
that there is one set of octahedral directions with a third of the molecular 
population, and another set with two-thirds of the population. This is in agreement 
with the result where this transition was lirst observed [3], the crystal phase being 
identified as triclinic with three molecules in the primitive unit cell, two of which are 
related by a center of symmetry. A similar conclusion can be found from these 
diagrams as follows. 

The centers of density on the dot-plot for 25 K can be pinpointed to within one 
degree and the angles between pairs of these points found by measuring along 
common great circles. The angles so found are shown in Fig. 7, the 90” angles 
between points of the same octahedra not being shown numerically. It is clear that 
the two octahedra are unrelated by any symmetry but that there is a point, denoted 
by an open circle in Fig. 7, which is the direction of a two-fold (110) axis of both 
octahedra. A two-fold symmetry would have to be reflected in the symmetry of the 
underlying crystal lattice, which is not the case. 
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FIG. 7. The great-circle angles between the distribution centers found from Fig. 6 at 25 K. Triclinic 
symmetry can be deduced as there is no symmetry in the measured angles. 

Following the development of the dot-plots as a function of temperature we see 
in Fig. 6 for 25, 50, 75, and 85 K that the molecules are experiencing increased ther- 
mal motion, but that the single crystal is persisting. Transitions are observable in 
Fig. 8. The clarity of the 90 K plot is not sufficient to indicate a change of phase to 
the intermediate structure, but it is clear that by 95 K the one-third rnole~u~a~ 
component is disordered as it must be in the intermediate phase. By 1 K the 
ordering is concentrated about the Cartesian directions, showing reversion to the 
plastic cubic phase, and by 125 K all ordering has disappeared and the dluster is 
liquid. One solid state transition is therefore clear, and also the melting tra~s~tio~~ 
The identification of the range (if any) of the analysis of these phase transitions as a 
function of droplet size is now being sttudied in detail. 
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FIG. 8. Dot-plots as in Fig. 6 but for a sample heated to 90, then 95, 100, and 125 K. The ordering 
at 95 and 100 K corresponds to the plastic crystalline phase, and at 125 K the sample is liquid. 
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